14.7 Local Max/Min continued

 Recall: $\mathbf{2}^{\text {nd }}$ Deriv. Test:If (a, b) is a critical pt., compute:
$D=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}$

1. $\mathrm{D}>0, \mathrm{f}_{\mathrm{xx}}>0, \mathrm{f}_{\mathrm{yy}}>0 \rightarrow$ local min
2. $D>0, f_{x x}<0, f_{y y}<0 \rightarrow$ local max
3. $\mathrm{D}<0 \quad \rightarrow$ saddle point
4. $D=0$, test inconclusive

Entry Task:

Find and classify all critical points for

$$
f(x, y)=x^{2} y-9 y-x y^{2}+y^{3}
$$

Quick Examples: All three examples have a critical point at $(0,0)$.

1. $f(x, y)=15-x^{2}-y^{2}$,

$$
\begin{aligned}
& f_{x x}=-2, f_{y y}=-2, f_{x y}=0 \\
& D=(-2)(-2)-(0)^{2}=4 \\
& D>0, f_{x x}<0, f_{y y}<0
\end{aligned}
$$

2. $f(x, y)=x^{2}+y^{2}$,

$$
\begin{aligned}
& f_{x x}=2, f_{y y}=2, f_{x y}=0, \\
& D=(2)(2)-(0)^{2}=4 \\
& D>0, f_{x x}>0, f_{y y}>0
\end{aligned}
$$

3. $f(x, y)=x^{2}-y^{2}$
$f_{x x}=2, f_{y y}=-2, f_{x y}=0$,
$D=(2)(-2)-(0)^{2}=-4$
D <0 (note also, $\mathrm{f}_{\mathrm{xx}}<0, \mathrm{f}_{\mathrm{yy}}>0$)

Global Max/Min: Consider a surface $z=f(x, y)$ over region R on the $x y$-plane. The absolute/global max/min over R are the largest/smallest z-values.

Key fact (Extreme value theorem) The absolute max/min must occur at

1. A critical point, or
2. A boundary point.

Easy Example: Consider the paraboloid $z=x^{2}+y^{2}+3$ above the circular disk $x^{2}+y^{2} \leq 4$. Find the absolute max and min.

How to do global max/min problems:
Step 1: Find critical pts inside region.
Step 2: Find critical numbers and corners above each boundary.
Step 3: Evaluate the function at all pts from steps 1 and 2.

Biggest output = global max
Smallest output = global min

Boundaries (step 2) details:
i) For each boundary, give an equation in terms of x and y. Find intersection with surface.
ii) Find critical numbers and endpoints for this one variable function. Label "corners".

Another Example:

Find the absolute max/min of

$$
f(x, y)=x^{3}-12 x+y^{2}
$$

over the region

$$
x \geq 0, x^{2}+y^{2} \leq 9
$$

Homework hints

In applied optimization problems,
(a) Label Everything.
(b) Objective: What you are optimizing?!?!
(c) Constraint: What is given?
(d) Use the constraints and labels to give a 2 variable function for the objective.
Then find critical points!!
HW Examples:

1. Find the dimensions of the box with volume $1000 \mathrm{~cm}^{3}$ that has minimum surface area.

Objective?
Minimize surface area.

Constraint?
Given that volume is 1000 .
2. Find the points on the cone $z^{2}=x^{2}+y^{2}$ that are closest to $(4,2,0)$.

Objective?

Minimize distance from (x, y, z) points to the point $(4,2,0)$

Constraint?
(x, y, z) must be on $z^{2}=x^{2}+y^{2}$.
3. You want to build aquariums with slate for the base and glass for the sides (and no top). Slate costs $\$ 5 / \mathrm{in}^{2}$ and glass costs $\$ 1 / \mathrm{in}^{2}$. If the volume must be $1000 \mathrm{in}^{3}$, then what dimensions will minimize cost?

Objective?
Minimize cost
Constraint?
Volume needs to be 1000.

