14.7 Local Max/Min continued *Recall: 2nd Deriv. Test*:

If (a,b) is a critical pt., compute:

 $D = f_{xx}(a, b) f_{yy}(a, b) - [f_{xy}(a, b)]^{2}$ 1. D > 0, f_{xx} > 0, f_{yy} > 0 \rightarrow local min 2. D > 0, f_{xx} < 0, f_{yy} < 0 \rightarrow local max 3. D < 0 \rightarrow saddle point 4. D = 0, test inconclusive

Entry Task:

Find and classify all critical points for

$$f(x, y) = x^2 y - 9y - xy^2 + y^3$$

Quick Examples: All three examples have a critical point at (0,0).

1.
$$f(x,y) = 15 - x^2 - y^2$$
,
 $f_{xx} = -2$, $f_{yy} = -2$, $f_{xy} = 0$
 $D = (-2)(-2)-(0)^2 = 4$
 $D > 0$, $f_{xx} < 0$, $f_{yy} < 0$

2.
$$f(x,y) = x^2 + y^2$$
,
 $f_{xx} = 2$, $f_{yy} = 2$, $f_{xy} = 0$,
 $D = (2)(2) - (0)^2 = 4$
 $D > 0$, $f_{xx} > 0$, $f_{yy} > 0$

3.
$$f(x,y) = x^2 - y^2$$

 $f_{xx} = 2, f_{yy} = -2, f_{xy} = 0,$
 $D = (2)(-2) - (0)^2 = -4$
 $D < 0$ (note also, $f_{xx} < 0, f_{yy} > 0$)

Global Max/Min: Consider a surface z=f(x,y) over region R on the xy-plane. The **absolute/global max/min** over R are the largest/smallest z-values.

Key fact (Extreme value theorem) The absolute max/min must occur at

- 1. A critical point, or
- 2. A boundary point.

Easy Example: Consider the paraboloid $z = x^2 + y^2 + 3$ above the circular disk $x^2 + y^2 \le 4$. Find the absolute max and min. How to do global max/min problems:
Step 1: Find critical pts inside region.
Step 2: Find critical numbers and corners above each boundary.
Step 3: Evaluate the function at all pts from steps 1 and 2.

Biggest output = global max Smallest output = global min

Boundaries (step 2) details:

- For each boundary, give an equation in terms of x and y.
 Find intersection with surface.
- ii) Find critical numbers and endpoints for this one variable function. Label "corners".

Another Example:

Find the absolute max/min of

$$f(x, y) = x^3 - 12x + y^2$$

over the region

$$x \ge 0, x^2 + y^2 \le 9.$$

Homework hints

In applied optimization problems,

- (a) Label Everything.
- (b) *Objective*: What you are optimizing?!?!
- (c) *Constraint*: What is given?
- (d) Use the constraints and labels to give a 2 variable function for the objective.

Then find critical points!!

HW Examples:

 Find the dimensions of the box with volume 1000 cm³ that has minimum surface area. *Objective*? Minimize **surface area.**

Constraint? Given that volume is 1000.

2. Find the points on the cone $z^2 = x^2 + y^2$ that are closest to (4,2,0).

Objective? Minimize **distance** from (x,y,z) points to the point (4,2,0)

Constraint? (x,y,z) must be on $z^2 = x^2 + y^2$. 3. You want to build aquariums with slate for the base and glass for the sides (and no top). Slate costs \$5 / in² and glass costs \$1 / in². If the volume must be 1000 in³, then what dimensions will minimize cost?

Objective? Minimize **cost**

Constraint? Volume needs to be 1000.